Nouvel article accepté sur la thématique des ANN et des ENR dans la revue "renewable energy"

Hybrid methodology for hourly global radiation forecasting in Mediterranean area

Cyril Voyant, Marc Muselli, Christophe Paoli, Marie Laure Nivet

Renewable Energy (IF3)
Renewable Energy (IF3)
Comme nous l'avions remarqué à plusieurs reprises, le mixage (ou l'hybridation) de méthodes prédictives est souvent intéressant. Nous présentons ici une méthodologie de prédiction basée sur les deux forecasters les plus utilisés en modélisation de séries temporelles : les méthodes linéaires ARMA et non-linéaires ANN. Un constat ressort de cette étude, concernant les journées à forte occurrence nuageuse, les approches de type non-linéaire sont les plus aptes à modéliser l'intermittence, alors que pour les journées plus ensoleillées, l'approche linéaire est souvent plus appropriée.

Pour plus de détails, voici l'abstract de cette publication : The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) where ANN alone is the best.

Rédigé par Cyril VOYANT le Jeudi 15 Novembre 2012 à 20:28 | Lu 442 fois