Participation à l'EENVIRO'13 qui aura lieu à Bucarest (Roumanie) en Septembre 2013

URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

WANI TAMAS, GILLES NOTTON, CHRISTOPHE PAOLI, MARIE-LAURE NIVET, AURELIA BALU, CYRIL VOYANT


Participation à l'EENVIRO'13 qui aura lieu à Bucarest (Roumanie) en Septembre 2013
Cette présentation sera l'occasion pour Wani Tamas (étudiant en thèse à l'UDC) de montrer l'intérêt des MLP et de l'analyse en composante principale pour la prédiction de séries temporelles de concentration de polluants atmosphériques. Le résumé de cet article est:

"Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France) region , needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for meso-scale or local forecasting, but need powerful large variable sets, a good knowledge of atmospheric processes, and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in a Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANN) that have shown good results in the prediction of ozone concentration at horizon h+1 with data measured locally. The purpose of this study is to build a predictor to realize predictions of ozone and PM10 at horizon d+1 in Corsica in order to be able to anticipate pollution peak formation and to take appropriated prevention measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust event). Therefore, several ANN models will be used, for meteorological conditions clustering and for operational forecasting."

eenviro_2013.pdf EENVIRO 2013.pdf  (351.52 Ko)



Rédigé par Cyril VOYANT le Mardi 7 Mai 2013 à 20:12 | Lu 349 fois